Graphs — Breadth First Search

CSE 2011
YORK ' -1- Last Updated March 28", 2018
””””””””” Prof. J. Elder

IIIIIIIIII

Outcomes

» By understanding this lecture, you should be able to:

O Label a graph according to the order in which vertices are
discovered in a breadth-first search.

O Identify the current state of a breadth-first search in terms of
vertices that are previously discovered, just discovered or
undiscovered.

O Identify the contents of the breadth-first search queue at any
state of the search.

O Implement breadth-first search

L Demonstrate simple applications of breadth-first search

CSE 2011
YORK ' -2- Last Updated March 28", 2018
””””””””” Prof. J. Elder

IIIIIIIIII

Outline

» BFS Algorithm
» BFS Application: Shortest Path on an unweighted graph

CSE 2011
YORK ' -3- Last Updated March 28t", 2018
””””””””” Prof. J. Elder

IIIIIIIIII

Outline

» BFS Algorithm
» BFS Application: Shortest Path on an unweighted graph

CSE 2011
YORK ' -4 - Last Updated March 28", 2018
“““““““““ Prof. J. Elder

IIIIIIIIII

Breadth-First Search

» Breadth-first search (BFS) is a general technique for traversing a graph
» A BFS traversal of a graph G

O Visits all the vertices and edges of G

O Determines whether G is connected

O Computes the connected components of G

O Computes a spanning forest of G
» BFS on a graph with |V] vertices and |E| edges takes O(|V]+|E]) time

» BFS can be further extended to solve other graph problems
O Cycle detection

U Find and report a path with the minimum number of edges between two
given vertices

CSE 2011
YORK ' -5- Last Updated March 28t", 2018
“““““““““ £ Prof. J. Elder

IIIIIIIIII

BFS Algorithm Pattern

BFS(G,s)
Precondition: G is a graph, s is a vertex in G
Postcondition: all vertices in G reachable from s have been visited
for each vertex u € V[G]
colorfu] « BLACK //initialize vertex
colour[s] « RED
Q.enqueue(s)
while Q # 9
u < Q.dequeue()
for each v € Adj[u] //explore edge (u,Vv)
if color[v] = BLACK
colour[v] « RED
Q.enqueue(v)
colour[u] « GRAY

CSE 2011
YORK l -6- Last Updated March 28t", 2018
EEEEEEEEE Prof. J. Elder

IIIIIIIIII

BFS is a Level-Order Traversal

» Notice that in BFS exploration takes place on a
wavefront consisting of nodes that are all the same
distance from the source s.

» We can label these successive wavefronts by their
distance: Ly, L4, ...

CSE 2011
YORK ' -7 - Last Updated March 28", 2018
””””””””” Prof. J. Elder

IIIIIIIIII

BFS Example

G undiscovered
0 discovered (on Queue)

finished

unexplored edge

—p discovery edge

— = = p Cross edge

CSE 2011
YORK ' -8- Last Updated March 28t", 2018
““““““““ £ Prof. J. Elder

IIIIIIIIII

BFS Example (cont.)

- ———

- ————

- ——

- ———

N ———————

N ———————

CSE 2011

Last Updated March 28t", 2018

Prof. J. Elder

£

i L'd
I TY

BFS Example (cont.)

- ——

————

————

CSE 2011

Last Updated March 28t", 2018

-10 -

Prof. J. Elder

£

i u
TY

Properties

Notation
G,: connected component of s
Property 1

BFS(G, s) visits all the vertices and
edges of G,

Property 2
The discovery edges labeled by

BFS(G, s) form a spanning tree T, of

G,
Property 3
For each vertexvin L;

O The path of T,from stovhasi
edges

O Every path from s to vin G, has at
least i edges

YORK ' CSE 2011 e

IIIIIIIIII
UUUUUUUUUU

Prof. J. Elder

Last Updated March 28t", 2018

Analysis

» Setting/getting a vertex/edge label takes O(1) time

» Each vertex is labeled three times
O once as BLACK (undiscovered)

O once as RED (discovered, on queue)
O once as GRAY (finished)

» Each edge is considered twice (for an undirected graph)
» Each vertex is placed on the queue once

» Thus BFS runs in O(|V]+|E|) time provided the graph is
represented by an adjacency list structure

CSE 2011
YORKRI 12- Last Updated March 28!, 2018
””””””””” Prof. J. Elder

IIIIIIIIII

Applications

» BFS traversal can be specialized to solve the
following problems in O(|V|+|E]) time:

dCompute the connected components of G
dCompute a spanning forest of G
dFind a simple cycle in G, or report that G is a forest

JGiven two vertices of G, find a path in G between
them with the minimum number of edges, or report
that no such path exists

CSE 2011
YORKRI 13- Last Updated March 28!, 2018
””””””””” Prof. J. Elder

IIIIIIIIII

Outline

» BFS Algorithm

» BFS Application: Shortest Path on an unweighted
graph

CSE 2011
YORKRBI 14 Last Updated March 28!, 2018
EEEEEEEEE Prof. J. Elder

IIIIIIIIII

Application: Shortest Paths on an Unweighted Graph

» Goal: To recover the shortest paths from a source node
S to all other reachable nodes v in a graph.

[The length of each path and the paths themselves are returned.

» Notes:

O There are an exponential number of possible paths
O Analogous to level order traversal for trees

O This problem is harder for general graphs than trees because of
cycles!

CSE 2011
YORKRBI 15 Last Updated March 28!, 2018
””””””””” Prof. J. Elder

IIIIIIIIII

Breadth-First Search

Input: Graph & =(V,E) (directed or undirected) and source vertex s V.

Output:
d[v]= shortest path distance &(s,v) from s to v, Vv eV.
z[v] = u such that (v,v) is last edge on a shortest path from s to v.

> l|ldea: send out search ‘wave’ from s.

» Keep track of progress by colouring vertices:
O Undiscovered vertices are coloured black
O Just discovered vertices (on the wavefront) are coloured red.

O Previously discovered vertices (behind wavefront) are coloured grey.

CSE 2011
YORKRBI 16- Last Updated March 28!, 2018
““““““““““ Prof. J. Elder

IIIIIIIIII

BFS Algorithm with Distances and Predecessors
BFS(G,s)
Precondition: G is a graph, s is a vertex in G
Postcondition: d[u] = shortest distance 6[u] and
n[u] = predecessor of u on shortest path from s to each vertex u in G
for each vertex u e V[G]
d[u] ¢« o
r[u] < null
color[u] = BLACK //initialize vertex
colour[s] <« RED
d[s]< 0
Q.enqueue(s)
while Q # &
u < Q.dequeue()
for each v € Adj[u] //explore edge (u,v)
if color[v] = BLACK
colour[v] <« RED
d[v] « d[u]+1
w[v] < u
Q.enqueue(v)
colour[u]l « GRAY

CSE 2011
YORKRBI 17- Last Updated March 28!, 2018
g vERsLt Prof. J. Elder

IIIIIIIIII

BFS

-18-]

Found
Not Handled
Queue

Last Updated March 28t", 2018

Found
Not Handled
Queue

YORK CSE 2011 k

th
Prof. J. Elder Last Updated March 28™, 2018

BFS

Found
Not Handled
Queue

c R Q&

Last Updated March 28t", 2018

BFS

Found
Not Handled
Queue

c R Q&

Last Updated March 28t", 2018

BFS

Found
Not Handled
Queue

= O C 00 &

Last Updated March 28t", 2018

BFS

Found
S Not Handled
Queue
/ /&
a‘
/ It ¥ o
pd g b
c L~ N q :
] f
! e

-23 1 Last Updated March 28t", 2018

BFS

Found
Not Handled
Queue

®
| CsE2on k N _24_1

th
Prof. J. Elder Last Updated March 28™, 2018

BFS

Found
Not Handled
é /& Queue
Ny VAR
\ > S £
d m
M :

' CSE 2011 k D _25_1

Prof. J. Elder

Last Updated March 28t", 2018

BFS

Found
Not Handled

/é Queue
dq / K .
d ¥ |y
VN Y
C e .
\\ 3 “ | j

J

- 26 1 Last Updated March 28t", 2018

BFS

Found
Not Handled
. Queue
/ b\
dq /
SN,
e lg m
N ;
AN / 0

1

-7, Last Updated March 28, 2018

BFS

Found
Not Handled
s Queue
/ b\
dq /
FRA
< / g

m
<
J
h

1

Last Updated March 28t", 2018

BFS

Found
Not Handled
Queue

Last Updated March 28t", 2018

BFS

Found
Not Handled
Queue

Last Updated March 28t", 2018

BFS

Found
Not Handled
Queue

Last Updated March 28t", 2018

BFS

Found
Not Handled
Queue

Last Updated March 28t", 2018

Found
Not Handled
Queue

d=3

Last Updated March 28t", 2018

Found
Not Handled
Queue

d=3

Last Updated March 28t", 2018

Found
Not Handled
Queue

d=3

YORK CSE 201 d=3 A
.......... e L B -35-] Last Updated March 28", 2018

Found
Not Handled
Queue

k| d=4

YORK CSE 201 d=3 A
.......... e L B -36-] Last Updated March 28", 2018

Found

Not Handled
Queue
a d=4
Q d=5
C .l
\) 4=
h
. _

YORK u grs’o'f i?éma\ o -37-] d=3 Last Updated March 28", 2018

Breadth-First Search Algorithm: Properties
BFS(G,s)
Precondition: G is a graph, s is a vertex in G
Postcondition: d[u] = shortest distance d[u] and
n[u] = predecessor of u on shortest paths from s to each vertex u in G
for each vertex u e V[G]

d[u] « oo .

2u] null » Qis a FIFO queue.

color[u] = BLACK //initialize vertex > Each vertex assigned finite d
colours] < RED value at most once.
d[s]<0
Q.enqueue(s) » Q@ contains vertices with d
while Q # @ values {i, ..., i, i+1, ..., i+1}

u < Q.dequeue()
for each v € Adj[u] //explore edge (u,V)
if color[v] = BLACK

» d values assigned are
monotonically increasing over

colour[v] < RED time.
d[v] <« d[u]+1
nlv]«<u
Q.enqueue(v)
colour[u]l < GRAY
YO RI(g ' CSE 2011 -38 - Last Updated March 28t", 2018

Prof. J. Elder

Breadth-First-Search is Greedy

» Vertices are handled (and finished):
O in order of their discovery (FIFO queue)

J Smallest d values first

CSE 2011
YORK ' -39 - Last Updated March 28t", 2018
““““““““““ Prof. J. Elder

IIIIIIIIII

Outline

» BFS Algorithm
» BFS Application: Shortest Path on an unweighted graph

CSE 2011
YORKRBI _40- Last Updated March 28!, 2018
””””””””” Prof. J. Elder

IIIIIIIIII

Outcomes

» By understanding this lecture, you should be able to:

O Label a graph according to the order in which vertices are
discovered in a breadth-first search.

O Identify the current state of a breadth-first search in terms of
vertices that are previously discovered, just discovered or
undiscovered.

O Identify the contents of the breadth-first search queue at any
state of the search.

O Implement breadth-first search

L Demonstrate simple applications of breadth-first search

CSE 2011
YORKRI _41- Last Updated March 28!, 2018
””””””””” Prof. J. Elder

IIIIIIIIII

