Graphs — Breadth First Search

CSE 2011
YORK ' -1- Last Updated March 28", 2018
””””””””” Prof. J. Elder

IIIIIIIIII




Outcomes

» By understanding this lecture, you should be able to:

O Label a graph according to the order in which vertices are
discovered in a breadth-first search.

O Identify the current state of a breadth-first search in terms of
vertices that are previously discovered, just discovered or
undiscovered.

O Identify the contents of the breadth-first search queue at any
state of the search.

O Implement breadth-first search

L Demonstrate simple applications of breadth-first search
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Outline

» BFS Algorithm
» BFS Application: Shortest Path on an unweighted graph
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Outline

» BFS Algorithm
» BFS Application: Shortest Path on an unweighted graph
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Breadth-First Search

» Breadth-first search (BFS) is a general technique for traversing a graph
» A BFS traversal of a graph G

O Visits all the vertices and edges of G

O Determines whether G is connected

O Computes the connected components of G

O Computes a spanning forest of G
» BFS on a graph with |V] vertices and |E| edges takes O(|V]+|E]) time

» BFS can be further extended to solve other graph problems
O Cycle detection

U Find and report a path with the minimum number of edges between two
given vertices
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BFS Algorithm Pattern

BFS(G,s)
Precondition: G is a graph, s is a vertex in G
Postcondition: all vertices in G reachable from s have been visited
for each vertex u € V[G]
colorfu] « BLACK //initialize vertex
colour[s] « RED
Q.enqueue(s)
while Q # 9
u < Q.dequeue()
for each v € Adj[u] //explore edge (u,Vv)
if color[v] = BLACK
colour[v] « RED
Q.enqueue(v)
colour[u] « GRAY
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BFS is a Level-Order Traversal

» Notice that in BFS exploration takes place on a
wavefront consisting of nodes that are all the same
distance from the source s.

» We can label these successive wavefronts by their
distance: Ly, L4, ...
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BFS Example

G undiscovered
0 discovered (on Queue)

finished

unexplored edge

—p discovery edge

— = = p Cross edge

______
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BFS Example (cont.)
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BFS Example (cont.)
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Properties

Notation
G,: connected component of s
Property 1

BFS(G, s) visits all the vertices and
edges of G,

Property 2
The discovery edges labeled by

BFS(G, s) form a spanning tree T, of

G,
Property 3
For each vertexvin L;

O The path of T,from stovhasi
edges

O Every path from s to vin G, has at
least i edges
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Analysis

» Setting/getting a vertex/edge label takes O(1) time

» Each vertex is labeled three times
O once as BLACK (undiscovered)

O once as RED (discovered, on queue)
O once as GRAY (finished)

» Each edge is considered twice (for an undirected graph)
» Each vertex is placed on the queue once

» Thus BFS runs in O(|V]+|E|) time provided the graph is
represented by an adjacency list structure
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Applications

» BFS traversal can be specialized to solve the
following problems in O(|V|+|E]) time:

dCompute the connected components of G
dCompute a spanning forest of G
dFind a simple cycle in G, or report that G is a forest

JGiven two vertices of G, find a path in G between
them with the minimum number of edges, or report
that no such path exists
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Outline

» BFS Algorithm

» BFS Application: Shortest Path on an unweighted
graph
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Application: Shortest Paths on an Unweighted Graph

» Goal: To recover the shortest paths from a source node
S to all other reachable nodes v in a graph.

[ The length of each path and the paths themselves are returned.

» Notes:

O There are an exponential number of possible paths
O Analogous to level order traversal for trees

O This problem is harder for general graphs than trees because of
cycles!
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Breadth-First Search

Input: Graph & =(V,E) (directed or undirected) and source vertex s V.

Output:
d[v]= shortest path distance &(s,v) from s to v, Vv eV.
z[v] = u such that (v,v) is last edge on a shortest path from s to v.

> l|ldea: send out search ‘wave’ from s.

» Keep track of progress by colouring vertices:
O Undiscovered vertices are coloured black
O Just discovered vertices (on the wavefront) are coloured red.

O Previously discovered vertices (behind wavefront) are coloured grey.
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BFS Algorithm with Distances and Predecessors
BFS(G,s)
Precondition: G is a graph, s is a vertex in G
Postcondition: d[u] = shortest distance 6[u] and
n[u] = predecessor of u on shortest path from s to each vertex u in G
for each vertex u e V[G]
d[u] ¢« o
r[u] < null
color[u] = BLACK //initialize vertex
colour[s] <« RED
d[s]< 0
Q.enqueue(s)
while Q # &
u < Q.dequeue()
for each v € Adj[u] //explore edge (u,v)
if color[v] = BLACK
colour[v] <« RED
d[v] « d[u]+1
w[v] < u
Q.enqueue(v)
colour[u]l « GRAY
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BFS
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Breadth-First Search Algorithm: Properties
BFS(G,s)
Precondition: G is a graph, s is a vertex in G
Postcondition: d[u] = shortest distance d[u] and
n[u] = predecessor of u on shortest paths from s to each vertex u in G
for each vertex u e V[G]

d[u] « oo .

2u] null » Qis a FIFO queue.

color[u] = BLACK //initialize vertex > Each vertex assigned finite d
colours] < RED value at most once.
d[s]<0
Q.enqueue(s) » Q@ contains vertices with d
while Q # @ values {i, ..., i, i+1, ..., i+1}

u < Q.dequeue()
for each v € Adj[u] //explore edge (u,V)
if color[v] = BLACK

» d values assigned are
monotonically increasing over

colour[v] < RED time.
d[v] <« d[u]+1
nlv]«<u
Q.enqueue(v)
colour[u]l < GRAY
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Breadth-First-Search is Greedy

» Vertices are handled (and finished):
O in order of their discovery (FIFO queue)

J Smallest d values first
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Outline

» BFS Algorithm
» BFS Application: Shortest Path on an unweighted graph
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Outcomes

» By understanding this lecture, you should be able to:

O Label a graph according to the order in which vertices are
discovered in a breadth-first search.

O Identify the current state of a breadth-first search in terms of
vertices that are previously discovered, just discovered or
undiscovered.

O Identify the contents of the breadth-first search queue at any
state of the search.

O Implement breadth-first search

L Demonstrate simple applications of breadth-first search
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